Bernoulli Polynomials and Their Some New Congruence Properties

The aim of this article is to use the fundamental modus and the properties of the Euler polynomials and Bernoulli polynomials to prove some new congruences related to Bernoulli polynomials. One of them is that for any integer h or any non-negative integer n, we obtain the congruence B 2 n + 1 ( 2 h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry (Basel) 2019-03, Vol.11 (3), p.365
Hauptverfasser: Duan, Ran, Shen, Shimeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The aim of this article is to use the fundamental modus and the properties of the Euler polynomials and Bernoulli polynomials to prove some new congruences related to Bernoulli polynomials. One of them is that for any integer h or any non-negative integer n, we obtain the congruence B 2 n + 1 ( 2 h ) ≡ 0 mod ( 2 n + 1 ) , where B n ( x ) are Bernoulli polynomials.
ISSN:2073-8994
2073-8994
DOI:10.3390/sym11030365