Bernoulli Polynomials and Their Some New Congruence Properties
The aim of this article is to use the fundamental modus and the properties of the Euler polynomials and Bernoulli polynomials to prove some new congruences related to Bernoulli polynomials. One of them is that for any integer h or any non-negative integer n, we obtain the congruence B 2 n + 1 ( 2 h...
Gespeichert in:
Veröffentlicht in: | Symmetry (Basel) 2019-03, Vol.11 (3), p.365 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The aim of this article is to use the fundamental modus and the properties of the Euler polynomials and Bernoulli polynomials to prove some new congruences related to Bernoulli polynomials. One of them is that for any integer h or any non-negative integer n, we obtain the congruence B 2 n + 1 ( 2 h ) ≡ 0 mod ( 2 n + 1 ) , where B n ( x ) are Bernoulli polynomials. |
---|---|
ISSN: | 2073-8994 2073-8994 |
DOI: | 10.3390/sym11030365 |