Urban Air Quality Assessment by Fusing Spatial and Temporal Data from Multiple Study Sources Using Refined Estimation Methods
In urban environmental management and public health evaluation efforts, there is an urgent need for fine-grained urban air quality monitoring. However, the high price and sparse distribution of air quality monitoring equipment make it difficult to develop effective and comprehensive fine-scale monit...
Gespeichert in:
Veröffentlicht in: | ISPRS international journal of geo-information 2022-06, Vol.11 (6), p.330 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In urban environmental management and public health evaluation efforts, there is an urgent need for fine-grained urban air quality monitoring. However, the high price and sparse distribution of air quality monitoring equipment make it difficult to develop effective and comprehensive fine-scale monitoring at the city scale. This has also led to air quality estimation methods based on incomplete monitoring data, which lack the ability to detect urban air quality differences within a neighborhood. To address this problem, this study proposes a refined urban air quality estimation method that fuses multisource spatio-temporal data. Based on the fact that urban air quality is easily affected by social activities, this method integrates meteorological data with urban social activity data to form a comprehensive environmental data set. It uses the spatio-temporal feature extraction model to extract the multi-source spatio-temporal features of the comprehensive environmental data set. Finally, the improved cascade forest algorithm is used to fit the relationship between the multisource spatio-temporal features and the air quality index (AQI) to construct an air quality estimation model, and the model is used to estimate the hourly PM2.5 index in Beijing on a 1 km × 1 km grid. The results show that the estimation model has excellent performance, and its goodness-of-fit (R2) and root mean square error (RMSE) reach 0.961 and 17.47, respectively. This method effectively achieves the assessment of urban air quality differences within a neighborhood and provides a new strategy for preventing information fragmentation and improving the effectiveness of information representation in the data fusion process. |
---|---|
ISSN: | 2220-9964 2220-9964 |
DOI: | 10.3390/ijgi11060330 |