Bifurcation and Numerical Simulations of Ca2+ Oscillatory Behavior in Astrocytes
In this paper, the dynamical analysis of Ca2+ oscillations in astrocytes is theoretically investigated by the center manifold theorem and the stability theory of equilibrium point. The global structure of bifurcation and evoked Ca2+ dynamics are presented in a human astrocyte model from a mathematic...
Gespeichert in:
Veröffentlicht in: | Frontiers in physics 2020-08, Vol.8 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, the dynamical analysis of Ca2+ oscillations in astrocytes is theoretically investigated by the center manifold theorem and the stability theory of equilibrium point. The global structure of bifurcation and evoked Ca2+ dynamics are presented in a human astrocyte model from a mathematical perspective. Results show that the difference in appearance and disappearance of Ca2+ oscillations is partly due to two subcritical Hopf bifurcation points. In addition, the numerical simulations are performed to further verify the effectiveness of the proposed method. |
---|---|
ISSN: | 2296-424X 2296-424X |
DOI: | 10.3389/fphy.2020.00258 |