Fusion Learning for sEMG Recognition of Multiple Upper-Limb Rehabilitation Movements

Surface electromyogram (sEMG) signals have been used in human motion intention recognition, which has significant application prospects in the fields of rehabilitation medicine and cognitive science. However, some valuable dynamic information on upper-limb motions is lost in the process of feature e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2021-08, Vol.21 (16), p.5385
Hauptverfasser: Zhong, Tianyang, Li, Donglin, Wang, Jianhui, Xu, Jiacan, An, Zida, Zhu, Yue
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Surface electromyogram (sEMG) signals have been used in human motion intention recognition, which has significant application prospects in the fields of rehabilitation medicine and cognitive science. However, some valuable dynamic information on upper-limb motions is lost in the process of feature extraction for sEMG signals, and there exists the fact that only a small variety of rehabilitation movements can be distinguished, and the classification accuracy is easily affected. To solve these dilemmas, first, a multiscale time-frequency information fusion representation method (MTFIFR) is proposed to obtain the time-frequency features of multichannel sEMG signals. Then, this paper designs the multiple feature fusion network (MFFN), which aims at strengthening the ability of feature extraction. Finally, a deep belief network (DBN) was introduced as the classification model of the MFFN to boost the generalization performance for more types of upper-limb movements. In the experiments, 12 kinds of upper-limb rehabilitation actions were recognized utilizing four sEMG sensors. The maximum identification accuracy was 86.10% and the average classification accuracy of the proposed MFFN was 73.49%, indicating that the time-frequency representation approach combined with the MFFN is superior to the traditional machine learning and convolutional neural network.
ISSN:1424-8220
1424-8220
DOI:10.3390/s21165385