The Transcriptional Network Structure of a Myeloid Cell: A Computational Approach

Understanding the general principles underlying genetic regulation in eukaryotes is an incomplete and challenging endeavor. The lack of experimental information regarding the regulation of the whole set of transcription factors and their targets in different cell types is one of the main reasons to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of genomics 2017-01, Vol.2017 (2017), p.1-12
Hauptverfasser: Espinal-Enríquez, Jesús, Hernández-Lemus, Enrique, González-Terán, Daniel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Understanding the general principles underlying genetic regulation in eukaryotes is an incomplete and challenging endeavor. The lack of experimental information regarding the regulation of the whole set of transcription factors and their targets in different cell types is one of the main reasons to this incompleteness. So far, there is a small set of curated known interactions between transcription factors and their downstream genes. Here, we built a transcription factor network for human monocytic THP-1 myeloid cells based on the experimentally curated FANTOM4 database where nodes are genes and the experimental interactions correspond to links. We present the topological parameters which define the network as well as some global structural features and introduce a relative inuence parameter to quantify the relevance of a transcription factor in the context of induction of a phenotype. Genes like ZHX2, ADNP, or SMAD6 seem to be highly regulated to avoid an avalanche transcription event. We compare these results with those of RegulonDB, a highly curated transcriptional network for the prokaryotic organism E. coli, finding similarities between general hallmarks on both transcriptional programs. We believe that an approach, such as the one shown here, could help to understand the one regulation of transcription in eukaryotic cells.
ISSN:2314-436X
2314-4378
DOI:10.1155/2017/4858173