Assessing indoor positioning system: A q-spherical fuzzy rough TOPSIS analysis

This study investigates advanced data collection methodologies and their implications for understanding employee and customer behavior within specific locations. Employing a comprehensive multi-criteria decision-making framework, we evaluate various technologies based on four distinct criteria and f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Heliyon 2024-05, Vol.10 (10), p.e31018-e31018, Article e31018
Hauptverfasser: Bin Azim, Ahmad, Ali, Asad, Khan, Abdul Samad, Awwad, Fuad A., Ismail, Emad A.A., Ali, Sumbal
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study investigates advanced data collection methodologies and their implications for understanding employee and customer behavior within specific locations. Employing a comprehensive multi-criteria decision-making framework, we evaluate various technologies based on four distinct criteria and four technological alternatives. To identify the most effective technological solution, we employ the q-spherical fuzzy rough TOPSIS method, integrating three key parameters: lower set approximation, upper set approximation, and parameter q (where q ≥ 1). Our novel approach combines the TOPSIS method with q-spherical fuzzy rough set theory, providing deeper insights into data-driven decision-making processes in corporate environments. By comparing our proposed framework with existing multi-criteria decision-making methodologies, we demonstrate its strength and competitiveness. This research contributes to enhancing decision-making capabilities in corporate settings and beyond.
ISSN:2405-8440
2405-8440
DOI:10.1016/j.heliyon.2024.e31018