Histochemical Analyses Reveal That Stronger Intrinsic Defenses in Gossypium barbadense Than in G. hirsutum Are Associated With Resistance to Verticillium dahliae

Verticillium wilt, caused by Verticillium dahliae Kleb., is a serious threat to cotton (Gossypium spp.) crop production. To enhance our understanding of the plant's complex defensive mechanism, we examined colonization patterns and interactions between V. dahliae and two cotton species, the res...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular plant-microbe interactions 2017-12, Vol.30 (12), p.984-996
Hauptverfasser: Zhang, Yan, Wang, Xingfen, Rong, Wei, Yang, Jun, Li, Zhikun, Wu, Liqiang, Zhang, Guiyin, Ma, Zhiying
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Verticillium wilt, caused by Verticillium dahliae Kleb., is a serious threat to cotton (Gossypium spp.) crop production. To enhance our understanding of the plant's complex defensive mechanism, we examined colonization patterns and interactions between V. dahliae and two cotton species, the resistant G. barbadense and the susceptible G. hirsutum. Microscopic examinations and grafting experiments showed that the progression of infection was restricted within G. barbadense. At all pre- and postinoculation sampling times, levels of salicylic acid (SA) were also higher in that species than in G. hirsutum. Comparative RNA-Seq analyses indicated that infection induced dramatic changes in the expression of thousands of genes in G. hirsutum, whereas those changes were fewer and weaker in G. barbadense. Investigations of the morphological and biochemical nature of cell-wall barriers demonstrated that depositions of lignin, phenolic compounds, and callose were significantly higher in G. barbadense. To determine the contribution of a known resistance gene to these processes, we silenced GbEDS1 and found that the transformed plants had decreased SA production, which led to the upregulation of PLASMODESMATA-LOCATED PROTEIN (PDLP) 1 and PDLP6. This was followed by a decline in callose deposition in the plasmodesmata, which then led to increased pathogen susceptibility. This comparison between resistant and susceptible species indicated that both physical and chemical mechanisms play important roles in the defenses of cotton against V. dahliae.
ISSN:0894-0282
1943-7706
DOI:10.1094/MPMI-03-17-0067-R