Repair Priority in Distribution Systems Considering Resilience Enhancement

When a meteorological disaster occurs and equipment becomes damaged, a significant amount of time is required to repair the damaged components as it is impossible to repair several components simultaneously. Therefore, the determination of repair priority is a significant aspect of a distribution sy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energies (Basel) 2022-02, Vol.15 (3), p.1190
Hauptverfasser: Bae, In-Su, Kim, Sung-Yul, Kim, Dong-Min
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:When a meteorological disaster occurs and equipment becomes damaged, a significant amount of time is required to repair the damaged components as it is impossible to repair several components simultaneously. Therefore, the determination of repair priority is a significant aspect of a distribution system’s resilience. This study proposes a technique to identify the unserved areas of a radial distribution system based on the bus injection to the branch current (BIBC) matrix, as opposed to a complex optimization technique, for evaluating the repair priority determination strategy for all the possible disaster scenarios. Generally, most resilience metrics include the concept of duration; therefore, the strategy for resilience enhancement must optimize the recovery priority using an objective function that consists of the recovered capacity increment, rather than the recovered capacity. To verify the proposed method, in this paper, the resilience is evaluated under all the disaster scenarios that can occur in contingencies from N-2 to N-5. Since complex restoration or repair strategies could be simplified using the proposed method, it is expected that this study will make a significant contribution to the resilience enhancement in distribution systems.
ISSN:1996-1073
1996-1073
DOI:10.3390/en15031190