Revisiting the Formula for the Ramanujan Constant of a Series

The main contribution of this paper is to propose a closed expression for the Ramanujan constant of alternating series, based on the Euler–Boole summation formula. Such an expression is not present in the literature. We also highlight the only choice for the parameter a in the formula proposed by Ha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics (Basel) 2022-05, Vol.10 (9), p.1539
Hauptverfasser: Chagas, Jocemar, Tenreiro Machado, José, Lopes, António
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The main contribution of this paper is to propose a closed expression for the Ramanujan constant of alternating series, based on the Euler–Boole summation formula. Such an expression is not present in the literature. We also highlight the only choice for the parameter a in the formula proposed by Hardy for a series of positive terms, so the value obtained as the Ramanujan constant agrees with other summation methods for divergent series. Additionally, we derive the closed-formula for the Ramanujan constant of a series with the parameter chosen, under a natural interpretation of the integral term in the Euler–Maclaurin summation formula. Finally, we present several examples of the Ramanujan constant of divergent series.
ISSN:2227-7390
2227-7390
DOI:10.3390/math10091539