Analysis of Impact of Natural Ventilation Strategies in Ventilation Rates and Indoor Environmental Acoustics Using Sensor Measurement Data in Educational Buildings

Indoor environmental conditions can significantly affect occupants’ health and comfort. These conditions are especially important in educational buildings, where students, teachers and staff spend long periods of the day and are vulnerable to these factors. Recently, indoor air quality has been a fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2021-09, Vol.21 (18), p.6122
Hauptverfasser: de la Hoz-Torres, María L., Aguilar, Antonio J., Ruiz, Diego P., Martínez-Aires, María Dolores
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Indoor environmental conditions can significantly affect occupants’ health and comfort. These conditions are especially important in educational buildings, where students, teachers and staff spend long periods of the day and are vulnerable to these factors. Recently, indoor air quality has been a focus of attention to ensure that disease transmission in these spaces is minimised. In order to increase the knowledge in this field, experimental tests have been carried out to characterise the impact of natural ventilation strategies on indoor air quality and the acoustic environment. This study has evaluated three ventilation scenarios in four different classrooms in buildings of the University of Granada, considering different window and door opening configurations. Ventilation rates were estimated using the CO2 Decay Method, and background noise recordings were made in each classroom for acoustic tests. Results show that specific natural ventilation strategies have a relevant impact that is worth considering on the background noise in indoor spaces. In this sense ventilation rates provided by the different configurations varied between 3.7 and 39.8 air changes per hour (ACH) and the acoustic tests show a background noise ranging from 43 to 54 dBA in these scenarios. Consequently, managers and teachers should take into account not only the ACH, but also other collateral impacts on the indoor environmental conditions such as the thermal comfort or the acoustic environment.
ISSN:1424-8220
1424-8220
DOI:10.3390/s21186122