SCALE Modeling of Selected Neutronics Test Problems within the OECD UAM LWR’s Benchmark

The OECD UAM Benchmark was launched in 2005 with the objective of determining the uncertainty in the simulation of Light Water Reactors (LWRs) system calculations at all the stages of the coupled reactor physics—thermal hydraulics modeling. Within the framework of the “Neutronics Phase” of the Bench...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science and Technology of Nuclear Installations 2013-01, Vol.2013 (2013), p.1-11
Hauptverfasser: Mercatali, Luigi, Ivanov, Kostadin, Sánchez Espinoza, Victor Hugo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The OECD UAM Benchmark was launched in 2005 with the objective of determining the uncertainty in the simulation of Light Water Reactors (LWRs) system calculations at all the stages of the coupled reactor physics—thermal hydraulics modeling. Within the framework of the “Neutronics Phase” of the Benchmark the solutions of some selected test cases at the cell physics and lattice physics levels are presented. The SCALE 6.1 code package has been used for the neutronics modeling of the selected exercises. Sensitivity and Uncertainty analysis (S/U) based on the generalized perturbation theory has been performed in order to assess the uncertainty of the computation of some selected reactor integral parameters due to the uncertainty in the basic nuclear data. As a general trend, it has been found that the main sources of uncertainty are the 238U (n,γ) and the 239Pu nubar for the UOX- and the MOX-fuelled test cases, respectively. Moreover, the reference solutions for the test cases obtained using Monte Carlo methodologies together with a comparison between deterministic and stochastic solutions are presented.
ISSN:1687-6075
1687-6083
DOI:10.1155/2013/573697