Gauge-independent approach to resonant dark matter annihilation
A bstract In spontaneously broken gauge theories, transition amplitudes describing dark-matter (DM) annihilation processes through a resonance may become highly inaccurate close to a production threshold, if a Breit-Wigner (BW) ansatz with a constant width is used. To partially overcome this problem...
Gespeichert in:
Veröffentlicht in: | The journal of high energy physics 2019-02, Vol.2019 (2), p.1-28, Article 141 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A
bstract
In spontaneously broken gauge theories, transition amplitudes describing dark-matter (DM) annihilation processes through a resonance may become highly inaccurate close to a production threshold, if a Breit-Wigner (BW) ansatz with a constant width is used. To partially overcome this problem, the BW propagator needs to be modified by including a momentum dependent decay width. However, such an approach to resonant transition amplitudes generically suffers from gauge artefacts that may also give rise to a bad or ambiguous high-energy behaviour for such amplitudes. We address the two problems of gauge dependence and high-energy unitarity within a gauge-independent framework of resummation implemented by the so-called Pinch Technique. We study DM annihilation via scalar resonances in a gauged U(1)
X
complex-scalar extension of the Standard Model that features a massive stable gauge field which can play the role of the DM. We find that the predictions for the DM abundance may vary significantly from previous studies based on the naive BW ansatz and propose an alternative simple approximation which leads to the correct DM phenomenology. In particular, our results do not depend on the gauge-fixing parameter and are consistent with considerations from high-energy unitarity. |
---|---|
ISSN: | 1029-8479 1029-8479 |
DOI: | 10.1007/JHEP02(2019)141 |