Efficacy of rifampicin combination therapy against MRSA prosthetic vascular graft infections in a rat model
Staphylococcus aureus is a major cause of prosthetic vascular graft or endograft infections (VGEIs) and the optimal choice of antibiotics is unclear. We investigated various antibiotic choices as either monotherapy or combination therapy with rifampicin against MRSA in vitro and in vivo. Fosfomycin,...
Gespeichert in:
Veröffentlicht in: | Biofilm 2024-06, Vol.7, p.100189, Article 100189 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Staphylococcus aureus is a major cause of prosthetic vascular graft or endograft infections (VGEIs) and the optimal choice of antibiotics is unclear. We investigated various antibiotic choices as either monotherapy or combination therapy with rifampicin against MRSA in vitro and in vivo.
Fosfomycin, daptomycin and vancomycin alone or in combination with rifampicin was used against MRSA USA300 FPR3757. Each antibiotic was tested for synergism or antagonism with rifampicin in vitro, and all antibiotic regimens were tested against actively growing bacteria in media and non-growing bacteria in buffer, both as planktonic cells and in biofilms. A rat model of VGEI was used to quantify the therapeutic efficacy of antibiotics in vivo by measuring bacterial load on grafts and in spleen, liver and kidneys.
In vitro, rifampicin combinations did not reveal any synergism or antagonism in relation to growth inhibition. However, quantification of bactericidal activity revealed a strong antagonistic effect, both on biofilms and planktonic cells. This effect was only observed when treating active bacteria, as all antibiotics had little or no effect on inactive cells. Only daptomycin showed some biocidal activity against inactive cells. In vivo evaluation of therapy against VGEI contrasted the in vitro results. Rifampicin significantly increased the efficacy of both daptomycin and vancomycin. The combination of daptomycin and rifampicin was by far the most effective, curing 8 of 13 infected animals.
Our study demonstrates that daptomycin in combination with rifampicin shows promising potential against VGEI caused by MRSA. Furthermore, we show how in vitro evaluation of antibiotic combinations in laboratory media does not predict their therapeutic effect against VGEI in vivo, presumably due to a difference in the metabolic state of the bacteria.
•Vascular graft/endograft infections (VGEI) are characterized by biofilms with inactive, antibiotic-tolerant bacteria.•Vancomycin, daptomycin, and fosfomycin were effective against active but not inactive MRSA in vitro.•In vitro, rifampicin antagonized the biocidal activity of these drugs against active but not inactive MRSA.•Rifampicin combination therapy was the most effective treatment against VGEI in rats, indicating inactive bacteria dominate.•Daptomycin and rifampicin combinations was the most efficacious treatment. |
---|---|
ISSN: | 2590-2075 2590-2075 |
DOI: | 10.1016/j.bioflm.2024.100189 |