Event-Triggered Stability Analysis of Semi-Markovian Jump Networked Control System with Actuator Faults and Time-Varying Delay via Bessel–Legendre Inequalities
This paper discusses the stability of semi-Markovian jump networked control system containing time-varying delay and actuator faults. The system dynamic is optimized while the network resource is saved by introducing an improved static event-triggered mechanism. For deriving a less conservative stab...
Gespeichert in:
Veröffentlicht in: | Complexity (New York, N.Y.) N.Y.), 2019, Vol.2019 (2019), p.1-16 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper discusses the stability of semi-Markovian jump networked control system containing time-varying delay and actuator faults. The system dynamic is optimized while the network resource is saved by introducing an improved static event-triggered mechanism. For deriving a less conservative stability criterion, the Bessel–Legendre inequalities approach is employed to the stability analysis and plays a major role. By constructing the enhanced Lyapunov–Krasovskii functional (LKF) relevant to the Legendre polynomials, a stability criterion with lower conservativeness indexed by N is derived, and the conservativeness will decrease as N increases. In addition, a controller is designed. To prove the validity of this paper, numerical examples are provided at the last. |
---|---|
ISSN: | 1076-2787 1099-0526 |
DOI: | 10.1155/2019/6927528 |