Medical information management system based on multi-source heterogeneous big data
This study aims to provide a medical information management system using multi-source heterogeneous big data to improve medical service quality and efficiency, with a motivation on its potential in medical insurance DRG payment. The system framework uses Back Propagation Neural Network (BPNN) techno...
Gespeichert in:
Veröffentlicht in: | Computer methods in biomechanics and biomedical engineering. 2024-12, Vol.12 (1) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This study aims to provide a medical information management system using multi-source heterogeneous big data to improve medical service quality and efficiency, with a motivation on its potential in medical insurance DRG payment. The system framework uses Back Propagation Neural Network (BPNN) technology to efficiently process and analyze multi-source medical data. Comparative experiments and parameter adjustments evaluated the system's performance. Results show that the BPNN model achieved excellent accuracy (92.5%), recall (93%), and F1 value (92.8%) on the test data set, outperforming other models such as PSO(88%), CNN(89%), and RNN(90%). The system's response speed was also significantly improved, with an average response time of 0.38 seconds, compared to 0.89 seconds for traditional systems. A 72-hour stability test confirmed the system's reliability and ability to meet user needs. The proposed system demonstrates improved performance and user experience, making it a promising solution for medical information management and DRG payment applications. |
---|---|
ISSN: | 2168-1163 2168-1171 |
DOI: | 10.1080/21681163.2024.2389816 |