Artificial benchmark for community detection with outliers (ABCD+o)

The A rtificial B enchmark for C ommunity D etection graph ( ABCD ) is a random graph model with community structure and power-law distribution for both degrees and community sizes. The model generates graphs with similar properties as the well-known LFR one, and its main parameter ξ can be tuned to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Network Science 2023-12, Vol.8 (1), p.25-22, Article 25
Hauptverfasser: Kaminski, Bogumil, Pralat, Pawel, Théberge, François
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The A rtificial B enchmark for C ommunity D etection graph ( ABCD ) is a random graph model with community structure and power-law distribution for both degrees and community sizes. The model generates graphs with similar properties as the well-known LFR one, and its main parameter ξ can be tuned to mimic its counterpart in the LFR model, the mixing parameter μ . In this paper, we extend the ABCD model to include potential outliers. We perform some exploratory experiments on both the new ABCD+o model as well as a real-world network to show that outliers pose some distinguishable properties. This ensures that our new model may serve as a benchmark of outlier detection algorithms.
ISSN:2364-8228
2364-8228
DOI:10.1007/s41109-023-00552-9