Kilohertz-frequency interferential current induces hypoalgesic effects more comfortably than TENS

Recent research on transcutaneous electrical stimulation has shown that inhibiting nerve conduction with a kilohertz frequency is both effective and safe. This study primarily aims to demonstrate the hypoalgesic effect on the tibial nerve using transcutaneous interferential-current nerve inhibition...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2023-05, Vol.13 (1), p.8644-8644, Article 8644
Hauptverfasser: Park, Dahoon, Kim, Yushin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recent research on transcutaneous electrical stimulation has shown that inhibiting nerve conduction with a kilohertz frequency is both effective and safe. This study primarily aims to demonstrate the hypoalgesic effect on the tibial nerve using transcutaneous interferential-current nerve inhibition (TINI), which injects the kilohertz frequency produced by the interferential currents. Additionally, the secondary objective was to compare the analgesic effect and comfort of TINI and transcutaneous electrical nerve stimulation (TENS). Thirty-one healthy adults participated in this cross-over repeated measures study. The washout period was set to 24 h or more. Stimulus intensity was set just below the pain threshold level. TINI and TENS were applied for 20 min each. The ankle passive dorsiflexion range of motion, pressure pain threshold (PPT), and tactile threshold were measured at the baseline, pre-test, test (immediately before ceasing intervention), and post-test (30 min after ceasing intervention) sessions. After the interventions, the participants evaluated the level of discomfort for TINI and TENS on a 10 cm visual analog scale (VAS). As the results, PPT significantly increased compared to baseline in test and posttest sessions of TINI, but not in those of TENS. Also, participants reported that TENS was 36% more discomfort than TINI. The hypoalgesic effect was not significantly different between TINI and TENS. In conclusion, we found that TINI inhibited mechanical pain sensitivity and that the inhibitory effect persisted long after electrical stimulation ceased. Our study also shows that TINI provides the hypoalgesic effect more comfortably than TENS.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-023-35489-7