A Novel Urban Composition Index Based on Water-Impervious Surface-Pervious Surface (W-I-P) Model for Urban Compositions Mapping Using Landsat Imagery
Monitoring urban compositions spatially and temporally is a crucial issue for urban planning and management. Nowadays, remote sensing techniques have been widely applied for urban compositions extraction. Compared with other remote sensing techniques, spectral indices have significant advantages due...
Gespeichert in:
Veröffentlicht in: | Remote sensing (Basel, Switzerland) Switzerland), 2021-01, Vol.13 (1), p.3 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Monitoring urban compositions spatially and temporally is a crucial issue for urban planning and management. Nowadays, remote sensing techniques have been widely applied for urban compositions extraction. Compared with other remote sensing techniques, spectral indices have significant advantages due to their parameter-free and easy implementation. However, existing indices cannot extract different urban compositions well, and some of them can only extract one composition with less attention to other urban compositions. In this study, based on the water- impervious surface-pervious surface (W-I-P) model, a novel urban composition index (UCI) was developed by analyzing the robust features from the global spectral samples. Additionally, a semi-empirical threshold of UCI was proposed to extract different urban compositions (water, impervious surface area and pervious surface area). Four cities of China were selected as study areas, Landsat-8 images and Google Earth images were used for quantitative analysis. Correlation analysis, separability analysis, and accuracy assessment were conducted among UCI and five other existed indices (single and multiple composition indices) at the urban and global scales. Results indicated that UCI had a stronger correlation with the ISA proportion and a higher separability between each urban composition. UCI also achieved the highest overall accuracy and Kappa coefficient in urban compositions extraction. The suggested semi-empirical threshold was also testified to be reliable and can be a reference for practical application. There is convincing evidence that UCI is a simple, efficient, and reliable index for urban compositions extraction. |
---|---|
ISSN: | 2072-4292 2072-4292 |
DOI: | 10.3390/rs13010003 |