An Enhanced Gas Sensor Data Classification Method Using Principal Component Analysis and Synthetic Minority Over-Sampling Technique Algorithms

This study addresses the challenge of multi-dimensional and small gas sensor data classification using a gelatin-carbon black (CB-GE) composite film sensor, achieving 91.7% accuracy in differentiating gas types (ethanol, acetone, and air). Key techniques include Principal Component Analysis (PCA) fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Micromachines (Basel) 2024-12, Vol.15 (12), p.1501
Hauptverfasser: Zeng, Xianzhang, Shahzeb, Muhammad, Cheng, Xin, Shen, Qiang, Xiao, Hongyang, Xia, Cao, Xia, Yuanlin, Huang, Yubo, Xu, Jingfei, Wang, Zhuqing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study addresses the challenge of multi-dimensional and small gas sensor data classification using a gelatin-carbon black (CB-GE) composite film sensor, achieving 91.7% accuracy in differentiating gas types (ethanol, acetone, and air). Key techniques include Principal Component Analysis (PCA) for dimensionality reduction, the Synthetic Minority Over-sampling Technique (SMOTE) for data augmentation, and the Support Vector Machine (SVM) and K-Nearest Neighbor (KNN) algorithms for classification. PCA improved KNN and SVM classification, boosting the Area Under the Curve (AUC) scores by 15.7% and 25.2%, respectively. SMOTE increased KNN's accuracy by 2.1%, preserving data structure better than polynomial fitting. The results demonstrate a scalable approach to enhancing classification accuracy under data constraints. This approach shows promise for expanding gas sensor applicability in fields where data limitations previously restricted reliability and effectiveness.
ISSN:2072-666X
2072-666X
DOI:10.3390/mi15121501