Snow cover thickness estimation using radial basis function networks
This paper reports an experimental study designed for the in-depth investigation of how the radial basis function network (RBFN) estimates snow cover thickness as a function of climate and topographic parameters. The estimation problem is modeled in terms of both function regression and classificati...
Gespeichert in:
Veröffentlicht in: | The cryosphere 2013-05, Vol.7 (3), p.841-854 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper reports an experimental study designed for the in-depth investigation of how the radial basis function network (RBFN) estimates snow cover thickness as a function of climate and topographic parameters. The estimation problem is modeled in terms of both function regression and classification, obtaining continuous and discrete thickness values, respectively. The model is based on a minimal set of climatic and topographic data collected from a limited number of stations located in the Italian Central Alps. Several experiments have been conceived and conducted adopting different evaluation indexes. A comparison analysis was also developed for a quantitative evaluation of the advantages of the RBFN method over to conventional widely used spatial interpolation techniques when dealing with critical situations originated by lack of data and limited n-homogeneously distributed instrumented sites. The RBFN model proved competitive behavior and a valuable tool in critical situations in which conventional techniques suffer from a lack of representative data. |
---|---|
ISSN: | 1994-0424 1994-0416 1994-0424 1994-0416 |
DOI: | 10.5194/tc-7-841-2013 |