Development of Liposome-Based Immunoassay for the Detection of Cardiac Troponin I

Cardiovascular diseases (CVDs) are one of the foremost causes of mortality in intensive care units worldwide. The development of a rapid method to quantify cardiac troponin I (cTnI)—the gold-standard biomarker of myocardial infarction (MI) (or “heart attack”)—becomes crucial in the early diagnosis a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecules (Basel, Switzerland) Switzerland), 2021-11, Vol.26 (22), p.6988
Hauptverfasser: Radha, Remya, Al-Sayah, Mohammad Hussein
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cardiovascular diseases (CVDs) are one of the foremost causes of mortality in intensive care units worldwide. The development of a rapid method to quantify cardiac troponin I (cTnI)—the gold-standard biomarker of myocardial infarction (MI) (or “heart attack”)—becomes crucial in the early diagnosis and treatment of myocardial infarction (MI). This study investigates the development of an efficient fluorescent “sandwich” immunoassay using liposome-based fluorescent signal amplification and thereby enables the sensing and quantification of serum-cTnI at a concentration relevant to clinical settings. The calcein-loaded liposomes were utilized as fluorescent nano vehicles, and these have exhibited appropriate stability and efficient fluorescent properties. The standardized assay was sensitive and selective towards cTnI in both physiological buffer solutions and spiked human serum samples. The novel assay presented noble analytical results with sound dynamic linearity over a wide concentration range of 0 to 320 ng/mL and a detection limit of 6.5 ng/mL for cTnI in the spiked human serum.
ISSN:1420-3049
1420-3049
DOI:10.3390/molecules26226988