Mapping the Forage Nitrogen-Phosphorus Ratio Based on Sentinel-2 MSI Data and a Random Forest Algorithm in an Alpine Grassland Ecosystem of the Tibetan Plateau

Nondestructive and accurate estimating of the forage nitrogen–phosphorus (N:P) ratio is conducive to the real-time diagnosis of nutrient limitation and the formulation of a management scheme during the growth and development of forage. New-generation high-resolution remote sensors equipped with stra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Remote sensing (Basel, Switzerland) Switzerland), 2020-09, Vol.12 (18), p.2929
Hauptverfasser: Gao, Jinlong, Liu, Jie, Liang, Tiangang, Hou, Mengjing, Ge, Jing, Feng, Qisheng, Wu, Caixia, Li, Wenlong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nondestructive and accurate estimating of the forage nitrogen–phosphorus (N:P) ratio is conducive to the real-time diagnosis of nutrient limitation and the formulation of a management scheme during the growth and development of forage. New-generation high-resolution remote sensors equipped with strategic red-edge wavebands offer opportunities and challenges for estimating and mapping forage N:P ratio in support of the sustainable utilization of alpine grassland resources. This study aims to detect the forage N:P ratio as an ecological indicator of grassland nutrient content by employing Sentinel-2 multispectral instrument (MSI) data and a random forest (RF) algorithm. The results showed that the estimation accuracy (R2) of the forage N:P ratio model established by combining the optimized spectral bands and vegetation indices (VIs) is 0.49 and 0.59 in the vigorous growth period (July) and the senescing period (November) of forage, respectively. Moreover, Sentinel-2 MSI B9 and B12 bands contributed greatly to the estimation of the forage N:P ratio, and the VIs (RECI2) constructed by B5 and B8A bands performed well in the estimation of the forage N:P ratio. Overall, it is promising to map the spatial distribution of the forage N:P ratio in alpine grassland using Sentinel-2 MSI data at regional scales. This study will be potentially beneficial in implementing precise positioning of vegetation nutrient deficiency and scientific fertilization management of grassland.
ISSN:2072-4292
2072-4292
DOI:10.3390/rs12182929