SLC16a6, mTORC1, and Autophagy Regulate Ketone Body Excretion in the Intestinal Cells

Ketone bodies serve several functions in the intestinal epithelium, such as stem cell maintenance, cell proliferation and differentiation, and cancer growth. Nevertheless, there is limited understanding of the mechanisms governing the regulation of intestinal ketone body concentration. In this study...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biology (Basel, Switzerland) Switzerland), 2023-11, Vol.12 (12), p.1467
Hauptverfasser: Uebanso, Takashi, Fukui, Moeka, Naito, Chisato, Shimohata, Takaaki, Mawatari, Kazuaki, Takahashi, Akira
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ketone bodies serve several functions in the intestinal epithelium, such as stem cell maintenance, cell proliferation and differentiation, and cancer growth. Nevertheless, there is limited understanding of the mechanisms governing the regulation of intestinal ketone body concentration. In this study, we elucidated the factors responsible for ketone body production and excretion using shRNA-mediated or pharmacological inhibition of specific genes or functions in the intestinal cells. We revealed that a fasting-mimicked culture medium, which excluded glucose, pyruvate, and glutamine, augmented ketone body production and excretion in the Caco2 and HT29 colorectal cells. This effect was attenuated by glucose or glutamine supplementation. On the other hand, the inhibition of the mammalian target of rapamycin complex1 (mTORC1) recovered a fraction of the excreted ketone bodies. In addition, the pharmacological or shbeclin1-mediated inhibition of autophagy suppressed ketone body excretion. The knockdown of basigin, a transmembrane protein responsible for targeting monocarboxylate transporters (MCTs), such as MCT1 and MCT4, suppressed lactic acid and pyruvic acid excretion but increased ketone body excretion. Finally, we found that MCT7 (SLC16a6) knockdown suppressed ketone body excretion. Our findings indicate that the mTORC1-autophagy axis and MCT7 are potential targets to regulate ketone body excretion from the intestinal epithelium.
ISSN:2079-7737
2079-7737
DOI:10.3390/biology12121467