Genome Mining in Glass Chemistry Using Linear Component Analysis of Ion Conductivity Data

Understanding the multivariate origin of physical properties is particularly complex for polyionic glasses. As a concept, the term genome has been used to describe the entirety of structure‐property relations in solid materials, based on functional genes acting as descriptors for a particular proper...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced Science 2023-07, Vol.10 (21), p.e2301435-n/a
Hauptverfasser: Pan, Zhiwen, Dellith, Jan, Wondraczek, Lothar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Understanding the multivariate origin of physical properties is particularly complex for polyionic glasses. As a concept, the term genome has been used to describe the entirety of structure‐property relations in solid materials, based on functional genes acting as descriptors for a particular property, for example, for input in regression analysis or other machine‐learning tools. Here, the genes of ionic conductivity in polyionic sodium‐conducting glasses are presented as fictive chemical entities with a characteristic stoichiometry, derived from strong linear component analysis (SLCA) of a uniquely consistent dataset. SLCA is based on a twofold optimization problem that maximizes the quality of linear regression between a property (here: ionic conductivity) and champion candidates from all possible combinations of elements. Family trees and matrix rotation analysis are subsequently used to filter for essential elemental combinations, and from their characteristic mean composition, the essential genes. These genes reveal the intrinsic relationships within the multivariate input data. While they do not require a structural representation in real space, how possible structural interpretations agree with intuitive understanding of structural entities known from spectroscopic experiments is finally demonstrated. Understanding the multivariate origin of physical properties is particularly complex for polyionic glasses. Here, the genes of ionic conductivity are derived from strong linear component analysis of a uniquely consistent dataset, and are presented as fictive chemical entities. Their possible structural interpretations are demonstrated to agree with spectroscopic experiments.
ISSN:2198-3844
2198-3844
DOI:10.1002/advs.202301435