Permanents of Hexagonal and Armchair Chains

The permanent is important invariants of a graph with some applications in physics. If G is a graph with adjacency matrix A=aij, then the permanent of A is defined as permA=∑σ∈Sn∏i=1naiσi, where Sn denotes the symmetric group on n symbols. In this paper, the general form of the adjacency matrices of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of mathematics and mathematical sciences 2022-11, Vol.2022, p.1-6
Hauptverfasser: Nekooei, O., Barzegar, H., Ashrafi, A. R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The permanent is important invariants of a graph with some applications in physics. If G is a graph with adjacency matrix A=aij, then the permanent of A is defined as permA=∑σ∈Sn∏i=1naiσi, where Sn denotes the symmetric group on n symbols. In this paper, the general form of the adjacency matrices of hexagonal and armchair chains will be computed. As a consequence of our work, it is proved that if Gk and Hk denote the hexagonal and armchair chains, respectively, then permAG1=4, permAGk=k+12, k≥2, and permAHk=4k with k≥1. One question about the permanent of a hexagonal zig-zag chain is also presented.
ISSN:0161-1712
1687-0425
DOI:10.1155/2022/7786922