Berberine attenuate staphylococcal enterotoxin B-mediated acute liver injury via regulating HDAC expression

Staphylococcal enterotoxin B (SEB) has been documented to be implicated in the pathogenesis of liver injury in the experimental models of hepatitis. However, the underlying mechanism of SEB-induced acute liver injury (ALI) remains to be further explored. In our study, we explored the therapeutic eff...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AMB Express 2018-10, Vol.8 (1), p.158-10, Article 158
Hauptverfasser: Du, Jiying, Ding, Xiaohua, Zhang, Xiaoqin, Zhao, Xinyu, Shan, Huidong, Wang, Fanping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Staphylococcal enterotoxin B (SEB) has been documented to be implicated in the pathogenesis of liver injury in the experimental models of hepatitis. However, the underlying mechanism of SEB-induced acute liver injury (ALI) remains to be further explored. In our study, we explored the therapeutic effectiveness of berberine (BBR), a natural isoquinoline alkaloid, in the SEB-induced ALI. In our study, we found that injection of SEB into d -galactosamine ( d -gal)-sensitized mice induced ALI, as demonstrated by an increase of levels of alanine aminotransferase and aspartate aminotransferase, massive infiltration of immune cells into the liver, and pro-inflammatory cytokine release. However, intragastric administration of BBR attenuated SEB-induced ALI in mice. Meanwhile, we discovered that BBR treatment suppressed activation of splenocytes and pro-inflammatory cytokine release in SEB-stimulated splenocytes. Moreover, mechanistic analyses demonstrated that BBR was effective at inhibiting the expression of class I HDAC, but not class II, in SEB-stimulated splenocytes. Furthermore, trichostatin A, a standard HDAC inhibitor, alleviated activation of splenocytes and pro-inflammatory cytokine release in SEB-stimulated splenocytes. Taken together, we inferred from these results that BBR attenuated SEB-mediated ALI through repressing the class I HDAC enzyme, suggesting that BBR may constitute a novel therapeutic modality to prevent SEB-mediated inflammation and ALI.
ISSN:2191-0855
2191-0855
DOI:10.1186/s13568-018-0684-2