Verdet Constant of Magneto-Active Materials Developed for High-Power Faraday Devices

We review the progress in the investigation of the Verdet constant of new magneto-active materials for the Faraday-effect-based devices used in high-power laser systems. A practical methodology for advanced characterization of the Verdet constant of these materials is presented, providing a useful t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2019-08, Vol.9 (15), p.3160
Hauptverfasser: Vojna, David, Slezák, Ondřej, Lucianetti, Antonio, Mocek, Tomáš
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We review the progress in the investigation of the Verdet constant of new magneto-active materials for the Faraday-effect-based devices used in high-power laser systems. A practical methodology for advanced characterization of the Verdet constant of these materials is presented, providing a useful tool for benchmarking the new materials. The experimental setup used for the characterization is a flexible and robust tool for evaluating the Faraday rotation angle induced in the magneto-active material, from which the Verdet constant is calculated based on the knowledge of the magnetic field and the material sample parameters. A general model for describing the measured Verdet constant data as a function of wavelength and temperature is given. In the final part of this review, we present a brief overview of several magneto-active materials, which have been to-date reported as promising candidates for utilization in the Faraday devices. This overview covers room-temperature investigations of the Verdet constant of several materials, which could be used for the ultraviolet, visible, near-infrared and mid-infrared wavelengths.
ISSN:2076-3417
2076-3417
DOI:10.3390/app9153160