Optimization of the linear quadratic regulator (LQR) control quarter car suspension system using genetic algorithm

In this paper, a genetic algorithm (GA) based in an optimization approach is presented in order to search the optimum weighting matrix parameters of a linear quadratic regulator (LQR). A Macpherson strut quarter car suspension system is implemented for ride control application. Initially, the GA is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ingeniería e investigación 2016-01, Vol.36 (1), p.23-30
Hauptverfasser: Nagarkar, Mahesh, Vikhe Patil, G. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, a genetic algorithm (GA) based in an optimization approach is presented in order to search the optimum weighting matrix parameters of a linear quadratic regulator (LQR). A Macpherson strut quarter car suspension system is implemented for ride control application. Initially, the GA is implemented with the objective of minimizing root mean square (RMS) controller force. For single objective optimization, RMS controller force is reduced by 20.42% with slight increase in RMS sprung mass acceleration. Trade-off is observed between controller force and sprung mass acceleration. Further, an analysis is extended to multi-objective optimization with objectives such as minimization of RMS controller force and RMS sprung mass acceleration and minimization of RMS controller force, RMS sprung mass acceleration and suspension space deflection. For multi-objective optimization, Pareto-front gives flexibility in order to choose the optimum solution as per designer’s need.
ISSN:0120-5609
2248-8723
DOI:10.15446/ing.investig.v36n1.49253