Hunting for Toxic Industrial Chemicals: Real-Time Detection of Carbon Disulfide Traces by Means of Ion Mobility Spectrometry

Sensitive real-time detection of vapors produced by toxic industrial chemicals (TICs) represents a stringent priority nowadays. Carbon disulfide (CS2) is such a chemical, being widely used in manufacturing synthetic textile fibers and as a solvent. CS2 is simultaneously a very reactive, highly flamm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Toxics (Basel) 2020-12, Vol.8 (4), p.121, Article 121
Hauptverfasser: Bocos-Bintintan, Victor, Ratiu, Ileana Andreea
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Sensitive real-time detection of vapors produced by toxic industrial chemicals (TICs) represents a stringent priority nowadays. Carbon disulfide (CS2) is such a chemical, being widely used in manufacturing synthetic textile fibers and as a solvent. CS2 is simultaneously a very reactive, highly flammable, irritant, corrosive, and highly toxic compound, affecting the central nervous system, cardiovascular system, eyes, kidneys, liver, skin, and reproductive system. This study was directed towards quick detection and quantification of CS2 in air, using time-of-flight ion mobility spectrometry (IMS); photoionization detection (PID) was also used as confirmatory technique. Results obtained indicated that IMS can detect CS2 at trace levels in air. The ion mobility spectrometric response was in the negative ion mode and presented one product ion, at a reduced ion mobility (K-0) of 2.25 cm(2) V-1 s(-1). Our study demonstrated that by using a portable, commercial IMS system (model Mini IMS, I.U.T. GmbH Berlin Germany) one can easily measure CS2 at concentrations of 0.1 ppm(v) (0.3 mg m(-3)) in the negative ion mode, which is below the lowest threshold value of 1 ppm(v) given for industrial hygiene. A limit of detection (LOD) of ca. 30 ppb(v) (0.1 mg m(-3)) was also estimated.
ISSN:2305-6304
2305-6304
DOI:10.3390/toxics8040121