Centrality dependence of proton and light nuclei yields as a consequence of baryon annihilation in the hadronic phase
The centrality dependence of the p/π ratio measured by the ALICE Collaboration in 5.02 TeV Pb-Pb collisions indicates a statistically significant suppression with the increase of the charged particle multiplicity once the centrality-correlated part of the systematic uncertainty is eliminated from th...
Gespeichert in:
Veröffentlicht in: | Physics letters. B 2022-12, Vol.835 (C), p.137577, Article 137577 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The centrality dependence of the p/π ratio measured by the ALICE Collaboration in 5.02 TeV Pb-Pb collisions indicates a statistically significant suppression with the increase of the charged particle multiplicity once the centrality-correlated part of the systematic uncertainty is eliminated from the data. We argue that this behavior can be attributed to baryon annihilation in the hadronic phase. By implementing the BB¯↔5π reaction within a generalized partial chemical equilibrium framework, we estimate the annihilation freeze-out temperature at different centralities, which decreases with increasing charged particle multiplicity and yields Tann=132±5 MeV in 0-5% most central collisions. This value is considerably below the hadronization temperature of Thad∼160 MeV but above the thermal (kinetic) freeze-out temperature of Tkin∼100 MeV. Baryon annihilation reactions thus remain relevant in the initial stage of the hadronic phase but freeze out before (pseudo-)elastic hadronic scatterings. One experimentally testable consequence of this picture is a suppression of various light nuclei to proton ratios in central collisions of heavy ions. |
---|---|
ISSN: | 0370-2693 1873-2445 |
DOI: | 10.1016/j.physletb.2022.137577 |