Effect of Gelam Honey on the Oxidative Stress-Induced Signaling Pathways in Pancreatic Hamster Cells

Background. Oxidative stress induced by reactive oxygen and nitrogen species is critically involved in the impairment of β-cell function during the development of diabetes. Methods. HIT-T15 cells were cultured in 5% CO2 and then preincubated with Gelam honey extracts (20, 40, 60, and 80 µg/mL) as we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International Journal of Endocrinology 2013-01, Vol.2013 (2013), p.526-535-062
Hauptverfasser: Batumalaie, Kalaivani, Zaman Safi, Sher, Mohd Yusof, Kamaruddin, Shah Ismail, Ikram, Devi Sekaran, Shamala, Qvist, Rajes
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background. Oxidative stress induced by reactive oxygen and nitrogen species is critically involved in the impairment of β-cell function during the development of diabetes. Methods. HIT-T15 cells were cultured in 5% CO2 and then preincubated with Gelam honey extracts (20, 40, 60, and 80 µg/mL) as well as quercetin (20, 40, 60, and 80 µM), prior to stimulation by 20 and 50 mM of glucose. Cell lysate was collected to determine the effect of honey extracts and quercetin on the stress activated NF-κB, MAPK pathways, and the Akt (ser473) activated insulin signaling pathway. Results. HIT-T15 cells cultured under hyperglycemic conditions demonstrated insulin resistance with a significant increase in the levels of MAPK, NF-κB, and IRS-1 serine phosphorylation (ser307); however, Akt expression and insulin contents are significantly decreased. Pretreatment with quercetin and Gelam honey extract improved insulin resistance and insulin content by reducing the expression of MAPK, NF-κB, and IRS-1 serine phosphorylation (ser307) and increasing the expression of Akt significantly. Conclusion. Gelam honey-induced differential expression of MAPK, NF-κB, IRS-1 (ser307), and Akt in HIT-T15 cells shows that Gelam honey exerts protective effects against diabetes- and hyperglycemia-induced oxidative stress by improving insulin content and insulin resistance.
ISSN:1687-8337
1687-8345
DOI:10.1155/2013/367312