LQI Control System Design with GA Approach for Flying-Type Firefighting Robot Using Waterpower and Weight-Shifting Mechanism

This study proposes a flying robot using waterpower and a novel weight-shifting mechanism, whose purpose is to be applied in firefighting tasks in water areas that are difficult to access and are suppressed by conventional firefighting methods. The sufficient amount of water in the area is used for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2022-09, Vol.12 (18), p.9334
Hauptverfasser: Dinh, Cao-Tri, Huynh, Thinh, Kim, Young-Bok
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study proposes a flying robot using waterpower and a novel weight-shifting mechanism, whose purpose is to be applied in firefighting tasks in water areas that are difficult to access and are suppressed by conventional firefighting methods. The sufficient amount of water in the area is used for propelling the robot, as well as fire suppression activity. A weight-shifting mechanism governs the weight distribution of the robot head in order to perform the robot motions. In this paper, the system’s dynamical characteristics are analyzed in detail through mathematical models. A linear-quadratic integrator (LQI) is designed for controlling the system motion. Additionally, the LQI is tuned with the genetic algorithm (GA) so that both system performance and robustness are optimally preserved. Simulation studies are carried out, in which the proposed system is compared with a cascade proportional-integral-derivative (PID) control system. The results validate the feasibility of the design and show the superiority of the proposed control system in motion performances. Moreover, the LQI-GA consumes 2.28% less water and uses 83.85% less kinetic energy of the actuator than the PID control system.
ISSN:2076-3417
2076-3417
DOI:10.3390/app12189334