Can alpine plant species “bank” on conservation?: Using artificial aging to understand seed longevity
Premise To conserve native plants, many institutions are turning toward ex‐situ conservation methods, such as storage in seed banks; however, not all seeds are able to survive in seed bank conditions, or may not in the long term. Experimental aging has shown that alpine species lose viability more q...
Gespeichert in:
Veröffentlicht in: | Applications In Plant Sciences 2022-09, Vol.10 (5), p.e11493-n/a |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Premise
To conserve native plants, many institutions are turning toward ex‐situ conservation methods, such as storage in seed banks; however, not all seeds are able to survive in seed bank conditions, or may not in the long term. Experimental aging has shown that alpine species lose viability more quickly than low‐elevation species. Furthermore, the germination requirements for rare species are largely unknown, but are a necessary first step in understanding storage behavior and viability decline.
Methods
Five alpine species were subjected to germination and accelerated aging experiments to understand their longevity in storage. For the accelerated aging experiment, the seeds were rehydrated in a dark incubator and subsequently placed in a drying oven. Following the aging process, the seeds were placed into previously determined germination conditions.
Results
All species had p50 values of |
---|---|
ISSN: | 2168-0450 2168-0450 |
DOI: | 10.1002/aps3.11493 |