New Fractional Integral Inequalities via k-Atangana–Baleanu Fractional Integral Operators
We propose the definitions of some fractional integral operators called k-Atangana–Baleanu fractional integral operators. These newly proposed operators are generalizations of the well-known Atangana–Baleanu fractional integral operators. As an application, we establish a generalization of the Hermi...
Gespeichert in:
Veröffentlicht in: | Fractal and fractional 2023-10, Vol.7 (10), p.740 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We propose the definitions of some fractional integral operators called k-Atangana–Baleanu fractional integral operators. These newly proposed operators are generalizations of the well-known Atangana–Baleanu fractional integral operators. As an application, we establish a generalization of the Hermite–Hadamard inequality. Additionally, we establish some new identities involving these new integral operators and obtained new fractional integral inequalities of the midpoint and trapezoidal type for functions whose derivatives are bounded or convex. |
---|---|
ISSN: | 2504-3110 2504-3110 |
DOI: | 10.3390/fractalfract7100740 |