New Fractional Integral Inequalities via k-Atangana–Baleanu Fractional Integral Operators

We propose the definitions of some fractional integral operators called k-Atangana–Baleanu fractional integral operators. These newly proposed operators are generalizations of the well-known Atangana–Baleanu fractional integral operators. As an application, we establish a generalization of the Hermi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fractal and fractional 2023-10, Vol.7 (10), p.740
Hauptverfasser: Kermausuor, Seth, Nwaeze, Eze R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose the definitions of some fractional integral operators called k-Atangana–Baleanu fractional integral operators. These newly proposed operators are generalizations of the well-known Atangana–Baleanu fractional integral operators. As an application, we establish a generalization of the Hermite–Hadamard inequality. Additionally, we establish some new identities involving these new integral operators and obtained new fractional integral inequalities of the midpoint and trapezoidal type for functions whose derivatives are bounded or convex.
ISSN:2504-3110
2504-3110
DOI:10.3390/fractalfract7100740