Improvement of Arsenic Phytoextraction Using Indigenous Bacteria and Mobilizing Agents
Among inorganic contaminants, arsenic (As) is known for its toxicity and the risks to the environment and human health that could derive from its presence. Phytoremediation represents an effective strategy for the removal of arsenic from contaminated soil, provided that suitable plant species and ad...
Gespeichert in:
Veröffentlicht in: | Applied sciences 2022-09, Vol.12 (18), p.9059 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Among inorganic contaminants, arsenic (As) is known for its toxicity and the risks to the environment and human health that could derive from its presence. Phytoremediation represents an effective strategy for the removal of arsenic from contaminated soil, provided that suitable plant species and adequate operational plans are exploited. With reference to a disused area located in Southern Italy which was the subject of a previous study, in this work, new strategies were investigated to further improve the effectiveness of a phytoremediation plan for the removal of arsenic. The usefulness of Cannabis sativa (hemp) and Zea mays (corn) was evaluated in this work by microcosm (300 g of mixed soil per test) and mesocosm (4 kg of mixed soil + 1 kg of inert gravel per test) experiments. The addition of arsenic-tolerant bacteria isolated from the rhizosphere of native herbaceous species grown in the contaminated soil was employed to promote plant growth, while different mixtures of mobilizing agents were tested to improve arsenic bioavailability. After the combined treatment, the arsenic content in the aerial parts of the plants increased by about 10 times in the case of corn (from 1.23 to 10.41 mg kg−1) and by about 8 times in the case of hemp (from 1.05 to 8.12 mg kg−1). |
---|---|
ISSN: | 2076-3417 2076-3417 |
DOI: | 10.3390/app12189059 |