A Hardy–Hilbert-type integral inequality involving two multiple upper-limit functions
By means of the weight functions, the idea of introducing parameters and the technique of real analysis, a new Hardy–Hilbert-type integral inequality with the homogeneous kernel 1 ( x + y ) λ ( λ > 0 ) involving two multiple upper-limit functions is obtained. The equivalent statements of the best...
Gespeichert in:
Veröffentlicht in: | Journal of inequalities and applications 2023-02, Vol.2023 (1), p.19-16, Article 19 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | By means of the weight functions, the idea of introducing parameters and the technique of real analysis, a new Hardy–Hilbert-type integral inequality with the homogeneous kernel
1
(
x
+
y
)
λ
(
λ
>
0
)
involving two multiple upper-limit functions is obtained. The equivalent statements of the best possible constant factor related to the beta and gamma functions are considered. As applications, the equivalent forms and the case of a nonhomogeneous kernel are deduced. Some particular inequalities and the operator expressions are provided. |
---|---|
ISSN: | 1029-242X 1025-5834 1029-242X |
DOI: | 10.1186/s13660-023-02931-3 |