Use of machine learning for a helium line intensity ratio method in Magnum-PSI

Optical emission spectroscopy (OES) of helium (He) line intensities has been used to measure the electron density, ne, and temperature, Te, in various plasma devices. In this study, a neural network with five hidden layers is introduced to model the relation between the OES data and ne/Te from laser...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nuclear Materials and Energy 2022-10, Vol.33, p.101281, Article 101281
Hauptverfasser: Kajita, Shin, Iwai, Sho, Tanaka, Hirohiko, Nishijima, Daisuke, Fujii, Keisuke, van der Meiden, Hennie, Ohno, Noriyasu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Optical emission spectroscopy (OES) of helium (He) line intensities has been used to measure the electron density, ne, and temperature, Te, in various plasma devices. In this study, a neural network with five hidden layers is introduced to model the relation between the OES data and ne/Te from laser Thomson scattering in the linear plasma device Magnum-PSI and compared to multiple regression analysis. It is shown that the neural network reduces the residual errors of prediction values (ne and Te) less than half those of the multiple regression analysis in the ranges of 2 × 1018
ISSN:2352-1791
2352-1791
DOI:10.1016/j.nme.2022.101281