Learning Rate of Regularized Regression Associated with Zonal Translation Networks

We give a systematic investigation on the reproducing property of the zonal translation network and apply this property to kernel regularized regression. We propose the concept of the Marcinkiewicz–Zygmund setting (MZS) for the scattered nodes collected from the unit sphere. We show that under the M...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics (Basel) 2024-09, Vol.12 (18), p.2840
Hauptverfasser: Ran, Xuexue, Sheng, Baohuai, Wang, Shuhua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We give a systematic investigation on the reproducing property of the zonal translation network and apply this property to kernel regularized regression. We propose the concept of the Marcinkiewicz–Zygmund setting (MZS) for the scattered nodes collected from the unit sphere. We show that under the MZ condition, the corresponding convolutional zonal translation network is a reproducing kernel Hilbert space. Based on these facts, we propose a kind of kernel regularized regression learning framework and provide the upper bound estimate for the learning rate. We also give proof for the density of the zonal translation network with spherical Fourier-Laplace series.
ISSN:2227-7390
2227-7390
DOI:10.3390/math12182840