Greatly Enhanced Thermoelectric Performance of Flexible Cu2−xS Composite Film on Nylon by Se Doping

In this work, flexible Cu2−xS films on nylon membranes are prepared by combining a simple hydrothermal synthesis and vacuum filtration followed by hot pressing. The films consist of Cu2S and Cu1.96S two phases with grain sizes from nano to submicron. Doping Se on the S site not only increases the Cu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanomaterials (Basel, Switzerland) Switzerland), 2024-05, Vol.14 (11), p.950
Hauptverfasser: Zuo, Xinru, Han, Xiaowen, Wang, Zixing, Liu, Ying, Li, Jiajia, Zhang, Mingcheng, Huang, Changjun, Cai, Kefeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work, flexible Cu2−xS films on nylon membranes are prepared by combining a simple hydrothermal synthesis and vacuum filtration followed by hot pressing. The films consist of Cu2S and Cu1.96S two phases with grain sizes from nano to submicron. Doping Se on the S site not only increases the Cu1.96S content in the Cu2−xS to increase carrier concentration but also modifies electronic structure, thereby greatly improves the electrical properties of the Cu2−xS. Specifically, an optimal composite film with a nominal composition of Cu2−xS0.98Se0.02 exhibits a high power factor of ~150.1 μW m−1 K−2 at 300 K, which increases by ~138% compared to that of the pristine Cu2−xS film. Meanwhile, the composite film shows outstanding flexibility (~97.2% of the original electrical conductivity is maintained after 1500 bending cycles with a bending radius of 4 mm). A four-leg flexible thermoelectric (TE) generator assembled with the optimal film generates a maximum power of 329.6 nW (corresponding power density of 1.70 W m−2) at a temperature difference of 31.1 K. This work provides a simple route to the preparation of high TE performance Cu2−xS-based films.
ISSN:2079-4991
2079-4991
DOI:10.3390/nano14110950