Some New q—Integral Inequalities Using Generalized Quantum Montgomery Identity via Preinvex Functions
In this work the authors establish a new generalized version of Montgomery’s identity in the setting of quantum calculus. From this result, some new estimates of Ostrowski type inequalities are given using preinvex functions. Given the generality of preinvex functions, particular q —integral inequal...
Gespeichert in:
Veröffentlicht in: | Symmetry (Basel) 2020-04, Vol.12 (4), p.553 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this work the authors establish a new generalized version of Montgomery’s identity in the setting of quantum calculus. From this result, some new estimates of Ostrowski type inequalities are given using preinvex functions. Given the generality of preinvex functions, particular q —integral inequalities are established with appropriate choice of the parametric bifunction. Some new special cases from the main results are obtained and some known results are recaptured as well. At the end, a briefly conclusion is given. |
---|---|
ISSN: | 2073-8994 2073-8994 |
DOI: | 10.3390/sym12040553 |