An Analysis of Protein Crystals Grown under Microgravity Conditions
Microgravity has been shown to be an excellent tool for protein crystal formation. A retrospective analysis of all publicly available crystallization data, including many that have not yet been published, clearly demonstrates the value of the microgravity environment for producing superior protein c...
Gespeichert in:
Veröffentlicht in: | Crystals (Basel) 2024-07, Vol.14 (7), p.652 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Microgravity has been shown to be an excellent tool for protein crystal formation. A retrospective analysis of all publicly available crystallization data, including many that have not yet been published, clearly demonstrates the value of the microgravity environment for producing superior protein crystals. The parameters in the database (the Butler Microgravity Protein Crystal Database, BμCDB) that were evaluated pertain to both crystal morphology and diffraction quality. Success metrics were determined as improvements in size, definition, uniformity, mosaicity, diffraction quality, resolution limits, and B factor. The proteins in the databases were evaluated by molecular weight, protein type, the number of subunits, space group, and Mattew’s Coefficient. Compared to ground experiments, crystals grown in a microgravity environment continue to show improvement across all metrics evaluated. General trends as well as numerical differences are included in the assessment of the BμCDB. The microgravity environment improves crystal formation across a spectrum of metrics and the datasets utilized for this investigation are excellent tools for this evaluation. |
---|---|
ISSN: | 2073-4352 2073-4352 |
DOI: | 10.3390/cryst14070652 |