Cytotoxic performance of green synthesized Ag and Mg dual doped ZnO NPs using Salvadora persica extract against MDA-MB-231 and MCF-10 cells
In this study, dual doped Zinc oxide nanoparticles consisted of silver and magnesium were prepared by Salvadora persica extract. Powder X-ray diffraction (PXRD) analysis displayed the formation of wurtzite ZnO phase nanostructures and dual doped nanoparticles. The morphological observations of scann...
Gespeichert in:
Veröffentlicht in: | Arabian journal of chemistry 2022-05, Vol.15 (5), p.103792, Article 103792 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this study, dual doped Zinc oxide nanoparticles consisted of silver and magnesium were prepared by Salvadora persica extract. Powder X-ray diffraction (PXRD) analysis displayed the formation of wurtzite ZnO phase nanostructures and dual doped nanoparticles. The morphological observations of scanning electron microscopy (SEM) confirmed the hexagonal morphology of prepared nanoparticles. The Raman scattering of this product exhibited the first and second orders of polar and non-polar modes that are the characteristic bonds of a wurtzite structure. The toxicity effects of synthesized un-doped, as well as Ag and Mg dual doped ZnO NPs on breast cancer cell (MDA-MB-231) and breast normal cell (MCF-10A) lines, were investigated by the means of MTT test. Accordingly, in comparison to the case of silver and magnesium doped zinc oxide nanoparticles, the un-doped ZnO NPs caused a more toxic impact on MDA-MB-231cells. There was a lack of any significant toxicity effects from un-doped and Ag and Mg dual doped ZnO nanoparticles on the experimented normal cell line (MCF-10A). The gathered results were indicative of a lower toxicity effect in doped nanoparticles when compared to un-doped nanoparticles and therefore, it can be stated that the doping of silver and magnesium metals produces more reliable zinc oxide nanoparticles. |
---|---|
ISSN: | 1878-5352 1878-5379 |
DOI: | 10.1016/j.arabjc.2022.103792 |