Unified Theory of Zeta-Functions Allied to Epstein Zeta-Functions and Associated with Maass Forms

In this paper, we shall establish a hierarchy of functional equations (as a G-function hierarchy) by unifying zeta-functions that satisfy the Hecke functional equation and those corresponding to Maass forms in the framework of the ramified functional equation with (essentially) two gamma factors thr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics (Basel) 2023-02, Vol.11 (4), p.917
Hauptverfasser: Wang, Nianliang, Kuzumaki, Takako, Kanemitsu, Shigeru
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we shall establish a hierarchy of functional equations (as a G-function hierarchy) by unifying zeta-functions that satisfy the Hecke functional equation and those corresponding to Maass forms in the framework of the ramified functional equation with (essentially) two gamma factors through the Fourier–Whittaker expansion. This unifies the theory of Epstein zeta-functions and zeta-functions associated to Maass forms and in a sense gives a method of construction of Maass forms. In the long term, this is a remote consequence of generalizing to an arithmetic progression through perturbed Dirichlet series.
ISSN:2227-7390
2227-7390
DOI:10.3390/math11040917