Simulation of a Gas-Solid Flow Field in a Two-Stage Rice Husk High-Temperature Pyrolysis and Gasification Cyclone Gasifier
A scheme for using a two-stage cyclone gasifier for high-temperature rice husk pyrolysis and gasification to reduce the tar content in biogas is presented in this study. The two-stage cyclone gasifier consisted of an upper cyclone high-temperature pyrolysis chamber and a lower steam spray gasifier....
Gespeichert in:
Veröffentlicht in: | Bioresources 2015-08, Vol.10 (3), p.4569-4579 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A scheme for using a two-stage cyclone gasifier for high-temperature rice husk pyrolysis and gasification to reduce the tar content in biogas is presented in this study. The two-stage cyclone gasifier consisted of an upper cyclone high-temperature pyrolysis chamber and a lower steam spray gasifier. The staging pyrolysis and gasification process used in this study can increase the carbon conversion efficiency and reduce tar content by increasing the pyrolysis temperature. This process uses part of the produced gas for combustion in an external burner to generate high-temperature (1600 °C) anaerobic flue gas and to provide heat for pyrolysis and gasification. This study simulates the isothermal gas phase and the gas-solid flow field for the upper cyclone chamber, as well as the gas-solid flow field, with steam (heat transfer between the steam and the gas is considered), for the entire gasifier by varying the structural and operational parameters. The optimal parameters for the cyclone gasifier for good mixing and lengthy residence (2.3 to 4.8 s) of the rice husk particles were found to be inlet angles of 20° and 30° with inlet velocities between 40 and 80 m/s. |
---|---|
ISSN: | 1930-2126 1930-2126 |
DOI: | 10.15376/biores.10.3.4569-4579 |