Study of Solution for a Parabolic Integrodifferential Equation with the Second Kind Integral Condition

In this paper, we establish sufficient conditions for the existence, uniqueness and numerical solution for a parabolic integrodifferential equation with the second kind integral condition. The existence, uniqueness of a strong solution for the linear problem based on a priori estimate “energy inequa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of analysis and applications 2018-01, Vol.16 (4), p.569-593
Hauptverfasser: Dhelis Sofiane, Bouziani Abdelfatah, Oussaeif Taki-Eddine
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we establish sufficient conditions for the existence, uniqueness and numerical solution for a parabolic integrodifferential equation with the second kind integral condition. The existence, uniqueness of a strong solution for the linear problem based on a priori estimate “energy inequality” and transformation of the linear problem to linear first-order ordinary differential equation with second member. Then by using a priori estimate and applying an iterative process based on results obtained for the linear problem, we prove the existence, uniqueness of the weak generalized solution of the integrodifferential prob- lem. Also we have developed an efficient numerical scheme, which uses temporary problems with standard boundary conditions. A suitable combination of the auxiliary solutions defines an approximate solution to the original nonlocal problem, the algebraic matrices obtained after the full discretization are tridiagonal, then the solution is obtained by using the Thomas algorithm. Some numerical results are reported to show the efficiency and accuracy of the scheme.
ISSN:2291-8639
2291-8639
DOI:10.28924/2291-8639-16-2018-569