Fast ion transport for synthesis and stabilization of β-Zn4Sb3
Mobile ion-enabled phenomena make β -Zn 4 Sb 3 a promising material in terms of the re-entry phase instability behavior, mixed electronic ionic conduction, and thermoelectric performance. Here, we utilize the fast Zn 2+ migration under a sawtooth waveform electric field and a dynamical growth of 3-d...
Gespeichert in:
Veröffentlicht in: | Nature communications 2021-10, Vol.12 (1), p.6077-6077, Article 6077 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Mobile ion-enabled phenomena make
β
-Zn
4
Sb
3
a promising material in terms of the re-entry phase instability behavior, mixed electronic ionic conduction, and thermoelectric performance. Here, we utilize the fast Zn
2+
migration under a sawtooth waveform electric field and a dynamical growth of 3-dimensional ionic conduction network to achieve ultra-fast synthesis of
β
-Zn
4
Sb
3
. Moreover, the interplay between the mobile ions, electric field, and temperature field gives rise to exquisite core-shell crystalline-amorphous microstructures that self-adaptively stabilize
β
-Zn
4
Sb
3
. Doping Cd or Ge on the Zn site as steric hindrance further stabilizes
β
-Zn
4
Sb
3
by restricting long-range Zn
2+
migration and extends the operation temperature range of high thermoelectric performance. These results provide insight into the development of mixed-conduction thermoelectric materials, batteries, and other functional materials.
β
-Zn
4
Sb
3
has promising thermoelectric performance, but its ionic migration properties make it prone to degradation. Here the authors exploit the ion migration in an electric field-assisted synthesis method, fast producing
β
-Zn
4
Sb
3
with improved phase stability and extended temperature range for the thermoelectric operation. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/s41467-021-26265-0 |