Multicore Parallelized Spatial Overlay Analysis Algorithm Using Vector Polygon Shape Complexity Index Optimization

As core algorithms of geographic computing, overlay analysis algorithms typically have computation-intensive and data-intensive characteristics. It is highly important to optimize overlay analysis algorithms by parallelizing the vector polygons after reasonable data division. To address the problem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2024-03, Vol.14 (5), p.2006
Hauptverfasser: Fan, Junfu, Zuo, Jiwei, Sun, Guangwei, Shi, Zongwen, Gao, Yu, Zhang, Yi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:As core algorithms of geographic computing, overlay analysis algorithms typically have computation-intensive and data-intensive characteristics. It is highly important to optimize overlay analysis algorithms by parallelizing the vector polygons after reasonable data division. To address the problem of unbalanced data partitioning in the task decomposition process for parallel polygon overlay analysis and calculation, this paper presents a data partitioning method based on shape complexity index optimization, which achieves data equalization among multicore parallel computing tasks. Taking the intersection operator and difference operator of the Vatti algorithm as examples, six polygon shape indexes are selected to construct the shape complexity model, and the vector data are divided in accordance with the calculated shape complexity results. Finally, multicore parallelism is achieved based on OpenMP. The experimental results show that when a data set with a large amount of data is used, the effect of the multicore parallel execution of the Vatti algorithm’s intersection operator and difference operator based on shape complexity division is clearly improved. With 16 threads, compared with the serial algorithm, speedups of 29 times and 32 times can be obtained. Compared with the traditional multicore parallel algorithm based on polygon number division, the speed can be improved by 33% and 29%, and the load balancing index is reduced. For a data set with a small amount of data, the acceleration effect of this method is similar to that of traditional methods involving multicore parallelism.
ISSN:2076-3417
2076-3417
DOI:10.3390/app14052006