Evaluating the Solar Slowly Varying Component at C-Band Using Dual- and Single-Polarization Weather Radars in Europe

Six C-band weather radars located in Europe (Finland, Netherlands, and Switzerland) have been used to monitor the slowly varying solar emission, which is an oscillation with an amplitude of several decibels and a period of approximately 27 days. It is caused by the fact that the number of active reg...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in meteorology 2017-01, Vol.2017 (2017), p.1-8
Hauptverfasser: Boscacci, M., Holleman, I., Sartori, M., Huuskonen, A., Gabella, M., Germann, U.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Six C-band weather radars located in Europe (Finland, Netherlands, and Switzerland) have been used to monitor the slowly varying solar emission, which is an oscillation with an amplitude of several decibels and a period of approximately 27 days. It is caused by the fact that the number of active regions that enhance the solar radio emission with respect to the quiet component, as seen from Earth, varies because of the Sun’s rotation about its axis. The analysis is based on solar signals contained in the polar volume data produced during the operational weather scan strategy. This paper presents hundreds of daily comparisons between radar estimates and the Sun’s reference signal, during the current active Sun period (year 2014). The Sun’s reference values are accurately measured by the Dominion Radio Astrophysical Observatory (DRAO) at S-band and converted to C-band using a standard DRAO formula. Vertical and horizontal polarization receivers are able to capture the monthly oscillation of the solar microwave signal: the standard deviation of the log-transformed ratio between radars and the DRAO reference ranges from 0.26 to 0.4 dB. A larger coefficient (and a different value for the quiet Sun component) in the standard formula improves the agreement.
ISSN:1687-9309
1687-9317
DOI:10.1155/2017/4971765