Tidal surface states as fingerprints of non-Hermitian nodal knot metals

Non-Hermitian nodal knot metals (NKMs) contain intricate complex-valued energy bands which give rise to knotted exceptional loops and new topological surface states. We introduce a formalism that connects the algebraic, geometric, and topological aspects of these surface states with their parent kno...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications physics 2021-03, Vol.4 (1), p.1-10, Article 47
Hauptverfasser: Zhang, Xiao, Li, Guangjie, Liu, Yuhan, Tai, Tommy, Thomale, Ronny, Lee, Ching Hua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Non-Hermitian nodal knot metals (NKMs) contain intricate complex-valued energy bands which give rise to knotted exceptional loops and new topological surface states. We introduce a formalism that connects the algebraic, geometric, and topological aspects of these surface states with their parent knots. We also provide an optimized constructive ansatz for tight-binding models for non-Hermitian NKMs of arbitrary knot complexity and minimal hybridization range. Specifically, various representative non-Hermitian torus knots Hamiltonians are constructed in real-space, and their nodal topologies studied via winding numbers that avoid the explicit construction of generalized Brillouin zones. In particular, we identify the surface state boundaries as “tidal” intersections of the complex band structure in a marine landscape analogy. Beyond topological quantities based on Berry phases, we further find these tidal surface states to be intimately connected to the band vorticity and the layer structure of their dual Seifert surface, and as such provide a fingerprint for non-Hermitian NKMs. Non-Hermitian systems have opened up a new level of complexity to non-trivial topological phases, particularly on the bulk-boundary correspondence in higher dimensions. Here, the authors developed a theoretical framework of tidal surface states for gapless nodal non-Hermitian metals, and explain their realizations with topolectrical circuits
ISSN:2399-3650
2399-3650
DOI:10.1038/s42005-021-00535-1