Hypothesis paper: GDF15 demonstrated promising potential in Cancer diagnosis and correlated with cardiac biomarkers
Cardiovascular toxicity represents a significant adverse consequence of cancer therapies, yet there remains a paucity of effective biomarkers for its timely monitoring and diagnosis. To give a first evidence able to elucidate the role of Growth Differentiation Factor 15 (GDF15) in the context of can...
Gespeichert in:
Veröffentlicht in: | Cardio-Oncology 2024-09, Vol.10 (1), p.56-15, Article 56 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Cardiovascular toxicity represents a significant adverse consequence of cancer therapies, yet there remains a paucity of effective biomarkers for its timely monitoring and diagnosis. To give a first evidence able to elucidate the role of Growth Differentiation Factor 15 (GDF15) in the context of cancer diagnosis and its specific association with cardiac indicators in cancer patients, thereby testing its potential in predicting the risk of CTRCD (cancer therapy related cardiac dysfunction).
Analysis of differentially expressed genes (DEGs), including GDF15, was performed by utilizing data from the public repositories of the Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO). Cardiomyopathy is the most common heart disease and its main clinical manifestations, such as heart failure and arrhythmia, are similar to those of CTRCD. Examination of GDF15 expression was conducted in various normal and cancerous tissues or sera, using available database and serum samples. The study further explored the correlation between GDF15 expression and the combined detection of cardiac troponin-T (c-TnT) and N-terminal prohormone of brain natriuretic peptide (NT-proBNP), assessing the combined diagnostic utility of these markers in predicting risk of CTRCD through longitudinal electrocardiograms (ECG).
GDF15 emerged as a significant DEG in both cancer and cardiomyopathy disease models, demonstrating good diagnostic efficacy across multiple cancer types compared to healthy controls. GDF15 levels in cancer patients correlated with the established cardiac biomarkers c-TnT and NT-proBNP. Moreover, higher GDF15 levels correlated with an increased risk of ECG changes in the cancer cohort.
GDF15 demonstrated promising diagnostic potential in cancer identification; higher GDF15, combined with elevated cardiac markers, may play a role in the monitoring and prediction of CTRCD risk. |
---|---|
ISSN: | 2057-3804 2057-3804 |
DOI: | 10.1186/s40959-024-00263-9 |